DISEÑO DE SISTEMAS DE MACHINE LEARNING

Disponibilidad:

  • Casa del lectorDisponible 1 ejemplar
  • Libro Técnico SurDisponible apróx. en 9 días
  • AlmacénDisponible apróx. en 2-3 días

DISEÑO DE SISTEMAS DE MACHINE LEARNING

UN PROCESO ITERATIVO PARA APLICACIONES LISTAS PARA FUNCIONAR

HUYEN, CHIP

41,15 €

1.1UY;UYQ;UYQM 01.1 10000000000000000 Leer más

41,15 €
Editorial:
MARCOMBO
Año de edición:
2023
Materia
Informatica
ISBN:
978-84-267-3695-6
Páginas:
378
Encuadernación:
Rústica
Colección:
O'REILLY

Prefacio .................................................................................................................... ix
1. Panorama de los sistemas de aprendizaje automático ................................... 1
Cuándo utilizar el aprendizaje automático 3
Casos de uso del aprendizaje automático 9
Cómo entender los sistemas de aprendizaje automático 12
El aprendizaje automático en la investigación y en la práctica 12
Los sistemas de aprendizaje automático y el software tradicional 22
Resumen 24
2. Introducción al diseño de sistemas de aprendizaje automático. .................. 25
Objetivos empresariales y de AA 26
Requisitos para los sistemas de AA 29
Confiabilidad 29
Escalabilidad 30
Capacidad de mantenimiento 31
Adaptabilidad 32
Proceso iterativo 32
Planteamiento de problemas de AA 34
Tipos de tareas del AA 35
Funciones objetivo 39
El intelecto frente a los datos 42
Resumen 45
3. Fundamentos de la ingeniería de datos .......................................................... 47
Las fuentes de datos 48
Formatos de datos 51
JSON 52
Los formatos de orden por filas frente a los de orden por columnas 52
Texto frente a formato binario 55
Modelos de datos 56
Modelo relacional 57
NoSQL 61
Datos estructurados frente a datos no estructurados 64
Motores de almacenamiento de datos y procesamiento 65
Procesamiento transaccional y analítico 66
ETL: Extraer, transformar y leer 69
Modos de flujo de datos 71
Datos que pasan por bases de datos 71
Datos que pasan a través de los servicios 71
Transferencia de datos a través del transporte de datos al instante 73
El procesamiento por lotes frente al procesamiento continuo 76
Resumen 78
4. Datos de formación ........................................................................................... 81
Muestreo 82
Muestreo no probabilístico 83
Muestreo aleatorio simple 84
Muestreo estratificado 84
Muestreo ponderado 85
Muestreo de depósito 86
Muestreo de importancia 87
Etiquetado 88
Etiquetas manuales 88
Etiquetas naturales 91
Cómo afrontar la falta de etiquetas 94
Desequilibrio de clases 103
Desafíos del desequilibrio de clases 104
Cómo afrontar el desequilibrio de clases 106
Aumento de datos 115
Transformaciones simples que conservan la etiqueta 115
Perturbación 116
Síntesis de datos 118
Resumen 120
5. Creación de atributos ..................................................................................... 121
Los atributos aprendidos frente a los diseñados 121
Operaciones comunes de creación de atributos 124
Manejo de valores faltantes 125
Escalado 127
Discretización 129
Codificación de atributos categóricos 130
Cruce de atributos 133
Incrustaciones posicionales discretas y continuas 134
Fuga de datos 136
Causas comunes de la fuga de datos 138
Detección de la fuga de datos 141
Creación de atributos buenos 142
Importancia de los atributos 142
Generalización de los atributos 145
Resumen 146
6. Desarrollo de modelos y evaluación fuera de línea ..................................... 149
Desarrollo de modelos y formación 150
Evaluación de modelos de AA 150
Ensambles 156
Rastreo de experimentos y control de versiones 162
Formación distribuida 167
AutoML 172
Evaluación del modelo fuera de línea 178
Referencias 179
Métodos de evaluación 181
Resumen 188
7. Servicio de predicción y puesta en marcha de modelos ............................. 191
Mitos sobre la instalación del aprendizaje automático 193
Mito 1: solo se instalan uno o dos modelos de AA a la vez 194
Mito 2: si no hacemos algo, el rendimiento del modelo seguirá igual 195
Mito 3: no necesitará actualizar mucho los modelos 195
Mito 4: la mayoría de los ingenieros de AA no necesitan
preocuparse por la escala 196
La predicción por lotes frente a la predicción en línea 197
De la predicción por lotes a la predicción en línea 200
Unificación de la canalización por lotes y la canalización de flujo 203
Compresión del modelo 205
Factorización de bajo rango 206
Destilación del conocimiento 207
Poda 207
Cuantificación 208
AA en la nube y en el perímetro 211
Compilación y optimización de modelos para dispositivos
periféricos 213
El AA en los navegadores 221
Resumen 222
8. Cambios y monitoreo de la distribución de los datos ................................. 225
Causas de los fallos en los sistemas de AA 226
Fallos del sistema informático 227
Fallos específicos del AA 228
Cambios en la distribución de los datos 236
Tipos de cambios en la distribución de los datos 237
Cambios generales en la distribución de los datos 241
Detección de cambios en la distribución de los datos 242
Cómo afrontar los cambios en la distribución de los datos 248
Monitoreo y observabilidad 250
Métricas específicas del AA 252
Herramientas de monitoreo 256
Observabilidad 260
Resumen 262
9. Aprendizaje continuo y pruebas en producción .......................................... 265
Aprendizaje continuo 266
Reformación sin estado frente a formación con estado 267
El porqué del aprendizaje continuo 270
Desafíos del aprendizaje continuo 272
Las cuatro etapas del aprendizaje continuo 277
Frecuencia de actualización de los modelos 282
Pruebas en producción 285
Implementación en paralelo 286
Pruebas A/B 286
Versión canario 288
Experimentos intercalados 289
Bandidos 291
Resumen 295
10. Infraestructura y herramientas para MLOps ................................................. 297
El almacenamiento y los cálculos 301
Nube pública frente a centros de datos privados 304
Entorno de desarrollo 306
Configuración del entorno de desarrollo 307
Estandarización de los entornos de desarrollo 310
Del desarrollo a la producción: contenedores 312
Gestión de recursos 315
Cron, planificadores y orquestadores 316
Gestión del flujo de trabajo de la ciencia de datos 319
La plataforma del AA 324
Puesta en marcha de los modelos 325
Almacén de modelos 326
Almacén de atributos 330
Crear frente a comprar 332
Resumen 335
11. El lado humano del aprendizaje automático................................................. 337
Experiencia del usuario 337
Garantizar la coherencia de la experiencia del usuario 338
Cómo evitar las predicciones «casi correctas» 338
Fallo suave 340
Estructura de equipo 340
Colaboración en equipos multifuncionales 341
Científicos de datos de principio a fin 341
IA responsable 345
IA irresponsable: caso de estudio 346
Un entorno para la IA responsable 353
Resumen 359
12. Epílogo ............................................................................................................. 361

1.1UY;UYQ;UYQM 01.1 10000000000000000

Artículos relacionados

  • CURSO DE MICROSOFT 365 Y COPILOT
    FERNANDEZ GUTIERREZ, ISABEL
    En este libro te mostraré el uso de potentes herramientas que potenciarán tu productividad en el entorno laboral, permitiéndote adaptarte rápidamente a los tiempos en que el trabajo remoto o híbrido es una opción probable.Este libro te enseñará a ubicar tus documentos en la nube para acceder a ellos desde cualquier lugar y dispositivo, comprenderás las diferencias entre OneDriv...

    28,80 €

  • APRENDA A CREAR PERSONAJES EN BLENDER
    Blender es el principal software 3D de código abierto del mundo, y ha sido creado por algunos de los mejores artistas digitales de todo el planeta. Dado que Blender es gratuito, para iniciarse en él solo necesitará este libro. Gracias a esta lectura, adquirirá las destrezas para crear personajes increíbles, incluso si es un neófito. Los proyectos, detallados paso a paso, cuenta...

    33,65 €

  • DAX LENGUAJE PARA EL ANALISIS DE DATOS
    MENCHEN PEÑUELA ANTONIO
    El lenguaje de Expresiones de Análisis de Datos (DAX) es un lenguaje muy potente que podemos utilizar en Power Pivot, un complemento de Excel que permite elaborar informes de forma gráfica con gran facilidad. De forma clara y didáctica aprenderá con esta obra como utilizar Power Pivot para diseñar modelos de datos o importarlos de otras fuentes, como hacer consultas desde Power...

    19,13 €

  • PRINCIPIOS DE PROGRAMACION
    CHACON SARTORI,CAMILO
    ¿Cuáles son los principios subyacentes a toda herramienta en programación? Si quiere conocer los ocho principios, técnicos y conductuales, que dan respuesta a esta pregunta, ha llegado al libro indicado. En una época donde cada día surgen nuevas tecnologías, el beneficio de conocer conceptos transversales a todas ellas no solo es imprescindible, sino también necesario. Además, ...

    32,50 €