ANALISIS DE DATOS CON POWER BI, R-RSTUDIO Y KNIME

Disponibilidad:

  • Casa del lectorDisponible apróx. en 10 días
  • Libro Técnico SurDisponible apróx. en 10 días
  • AlmacénDisponible apróx. en 9 días

ANALISIS DE DATOS CON POWER BI, R-RSTUDIO Y KNIME

JOFEBEUS

23,94 €

Este libro, condensa y adapta distintas prácticas y ejemplos de las herramientas más utilizadas en el análisis de datos: Power BI Desktop, R - RStudio y Knime. El capítulo 1, Prácticas con... Leer más

23,94 €
Editorial:
RAMA, EDITORIAL
Año de edición:
2021
Materia
Informatica
ISBN:
978-84-18971-22-8
Páginas:
294
Encuadernación:
Rústica
Colección:
MANUAL PRACTICO

CAPÍTULO 1. PRÁCTICAS CON POWER BI DESKTOP 1.1 GENERALIDADES DE POWER BI 1.1.1 Usos de Power BI 1.1.2 Conexión a datos 1.1.3 Creación de un modelo de datos 1.1.4 Creación de objetos visuales 1.1.5 Creación de informes 1.1.6 Compartir y publicar informes 1.2 PRÁCTICA ANÁLISIS DE DATOS FINANCIEROS 1.2.1 Carga de datos 1.2.2 Crear el modelo de datos 1.2.3 Crear el informe 1.2.4 Práctica análisis de datos por año 1.3 PRÁCTICA ANÁLISIS DE UNA PÁGINA WEB 1.3.1 Conexión a un origen de datos. 1.3.2 Limpieza de datos mediante el editor de Power Query 1.3.3 Importación de la consulta en la vista de informe 1.3.4 Creación de una visualización - Dashboard 1.4 PRÁCTICA COMBINAR DATOS CON POWER BI 1.4.1 Conectarse a un origen de datos. 1.4.2 Crear el modelo de datos 1.4.3 Combinar datos 1.4.4 Elaboración del Dashboard. 1.5 PRÁCTICA CREACIÓN DE MEDIDAS PROPIAS (EMPRESA CONTOSO) 1.5.1 Lectura y carga de archivo 1.5.2 Elaboración del Dashboard 1.5.3 Creación de medidas propias 1.6 PRÁCTICA ANÁLISIS DE DATOS DE UNA SUPERTIENDA 1.6.1 Conexión y carga del archivo de datos 1.6.2 Creación del dashboard General 1.6.3 Creación del dashboard Caribe 1.6.4 Creación del dashboard Centro 1.6.5 Creación del dashboard Norte 1.6.6 Creación del dashboard Sur 1.6.7 Análisis de datos de la muestra_supertienda CAPÍTULO 2. PRÁCTICAS CON R-RSTUDIO. 2.1 GENERALIDADES DEL LENGUAJE R 2.2 ENTORNO DE DESARROLLO INTEGRADO (IDE) RSTUDIO 2.2.1 Características o generalidades de RStudio 2.2.2 Ventanas del entorno IDE de Rstudio 2.3 INTRODUCCIÓN AL LENGUAJE R 2.3.1 Tipos de datos en R 2.3.2 Carga de datos 2.4 PRÁCTICA: ESTADÍSTICA DESCRIPTIVA DE UNA VARIABLE CUANTITATIVA CONTINUA 2.4.1 Origen de los datos 2.4.2 Medidas de tendencia central 2.4.3 Tabla de frecuencia e histograma 2.4.4 Medidas de variabilidad 2.4.5 Medidas de posición 2.4.6 Normalidad de los datos 2.4.7 Estadística descriptiva de la variable 2.4.8 Estadística descriptiva de la variable 2.5 PRÁCTICA REGRESIÓN LINEAL 2.5.1 Correlación Temperatura vs Nivel de Ozono 2.5.2 Correlación Nivel de Ozono vs Radiación Solar 2.5.3 Correlación Temperatura vs Nivel de Radiación Solar 2.5.4 Correlación Temperatura vs Velocidad de Viento 2.5.5 Correlación entre múltiples variables 2.5.6 Correlación Nivel de Ozono vs Velocidad del viento 2.5.7 Correlación Nivel de Radiación solar vs Velocidad del viento 2.6 PRÁCTICA ÁRBOLES DE DECISIÓN 2.6.1 Característica de los árboles de decisión 2.6.2 Requerimientos 2.6.3 Importar los datos 2.6.4 Generar un set de entrenamiento y prueba 2.6.5 Elección del modelo 2.6.6 Sistematizando el modelo 2.6.7 Conclusión 2.6.8 Ejercicio: Creación y análisis de un árbol de decisión 2.7 PRÁCTICA MINERÍA DE TEXTO 2.7.1 Instalación de los paquetes requeridos 2.7.2 Carga de datos 2.7.3 Ejercicio: Análisis del texto: Aplicaciones de la inteligencia artificial CAPÍTULO 3. PRÁCTICAS CON KNIME 3.1 DESCARGAR E INSTALAR KNIME ANALYTICS 3.1.1 Instalar Knime Analytics 3.1.2 Actualizar datos 3.2 INTRODUCCIÓN A KNIME ANALYTICS 3.2.1 Elementos de la ventana de inicio de Knime 3.2.2 Nodos y flujo de trabajo 3.2.3 Ventajas y desventajas de Knime. 3.2.4 Crear un proyecto Knime. 3.3 PRÁCTICA CIENCIA DE DATOS. 3.3.1 Concepto y fases 3.3.2 Crear un flujo de trabajo Workflow 3.3.3 Síntesis del análisis de datos del sistema CRM 3.4 PRÁCTICA MODELO DE ENTRENAMIENTO DE CLASIFICACIÓN DE DATOS 3.4.1 Lectura de datos 3.4.2 Tratamiento y limpieza de los datos 3.4.3 Propiedades gráficas 3.4.4 Estadísticas descriptivas 3.4.5 Partición de datos 3.4.6 Entrenamiento del modelo de decisión 3.4.7 Tabla interactiva 3.4.8 Aplicar el modelo 3.4.9 Gráfico número de horas vs edad 3.4.10 Puntuar 3.4.11 Flujo de trabajo. 3.4.12 Práctica de resultados del modelo 3.5 PRÁCTICA MODELO DE PREDICCIÓN DE SUPERVIVENCIA DEL TITANIC 3.5.1 Lectura de datos 3.5.2 Exploración y tratamiento de datos 3.5.3 Propiedades gráficas (Titanic) 3.5.4 Estadísticas descriptivas (Titanic) 3.5.5 Partición de datos (Titanic) 3.5.6 Entrenamiento del modelo de decisión 3.5.7 Aplicar el modelo 3.5.8 Puntuar 3.5.9 Flujo de trabajo 3.5.10 Práctica de resultados: modelo de predicción supervivenciA del Titanic SOLUCIÓN A LAS PRÁCTICAS Y EJERCICIOS PROPUESTOS CAPÍTULO 1. PRÁCTICAS CON POWER BI DESKTOP 1.2 Práctica: Análisis de datos financieros 1.3 Práctica: Análisis de una página Web 1.4 Práctica: Combinar datos con Power BI 1.5 Práctica: Creación de medidas propias (Empresa Contoso) 1.6 Práctica: Análisis de dato de una supertienda CAPÍTULO 2. PRÁCTICAS CON R - RSTUDIO 2.4 Práctica: Estadística descriptiva de una variable cuantitativa 2.5 Práctica: Regresión lineal 2.6 Práctica: Árboles de decisión 2.7 Práctica: Minería de texto CAPÍTULO 3. PRÁCTICAS CON KNIME. 3.3.3 Síntesis del análisis de datos del sistema CRM 3.4 Modelo de entrenamiento de clasificación de datos 3.5. Práctica de resultados modelo de predicción de supervivencia del titanic REFERENCIAS MATERIAL ADICIONAL

Este libro, condensa y adapta distintas prácticas y ejemplos de las herramientas más utilizadas en el análisis de datos: Power BI Desktop, R - RStudio y Knime. El capítulo 1, Prácticas con Power BI, se describe la conexión a datos, creación de un modelo de datos, creación de objetos visuales, trabajo con informes. Todo ello acompañado de prácticas de análisis de datos financieros, análisis de una página web (Eurocopa), combinar datos, creación de medidas propias y análisis de datos de una subentienda. El capítulo 2, Prácticas con R y RStudio, se describe el entorno de desarrollo y las características generales, donde se destaca: tipos de datos, carga de datos y prácticas de análisis de datos como: estadística descriptiva de una variable cuantitativa continua, regresión lineal, árboles de decisión y minería de texto. El capítulo 3, Prácticas con Knime, se inicia con la introducción a Knime Analytics donde se destaca: ventanas, nodos y flujo de trabajo y creación de un proyecto Knime. Se termina el capítulo con la descripción de las diferentes prácticas que involucran: ciencia de datos, modelo de entrenamiento de clasificación de datos y modelo de predicción de supervivencia del Titanic. Finalmente, se presenta la solución de todos los ejercicios planteados en las prácticas desarrolladas.

Artículos relacionados

  • HTML Y CSS. DISEÑO Y CONSTRUCCION DE SITIOS WEB
    DUCKETT, JON
    ¡Bienvenido a una forma amena de aprender HTML y CSS! Tanto si quieres diseñar y construir sitios web desde cero, como si deseas tener más control sobre un sitio ya existente, este libro te ayudará a crear contenido web atractivo y agradable para el usuario.Sabemos que el código puede intimidar un poco, pero echa un vistazo a las páginas interiores y verás en qué se diferencia ...

    48,03 €

  • PYTHON APLICADO A SEGURIDAD Y REDES
    ORTEGA CANDEL, JOSE MANUEL
    Descubra el poder de Python en la seguridad informática y la administración de redes Si ya posee unos conocimientos previos de programación, principalmente de Python, y quiere ir más allá en la seguridad informática y redes de ordenadores, ha llegado al libro indicado. A través de una exploración detallada y práctica, Python aplicado a seguridad y redes explora cómo la progr...

    33,46 €

  • RETOS DE PROGRAMACION CON JUEGOS. PYTHON Y JAVA
    NADAL, MARIONA
    Aprender a programar no siempre es fácil, pero sí podemos hacerlo entretenido: darles sentido a nuestros primeros programas y desarrollar pequeños juegos que nos ayuden, de forma práctica, a afianzar nuestro aprendizaje y que podremos utilizar luego para jugar un ratito. Java y Python son los dos lenguajes de programación más usados y, con este libro, no necesitas decidirte por...

    28,80 €

  • PLANTILLAS DAX PARA POWER BI Y POWER PIVOT
    POMARES MEDRANO, JOSE MANUEL
    Power BI y Excel son herramientas ideales para crear informes, dashboards o cuadros de mando a partir de grandes cantidades de datos. Sin embargo, es muy frecuente un aprovechamiento escaso de sus posibilidades de análisis. Puesto que tanto Excel (mediante su complemento Power Pivot) como Power BI pueden trabajar con modelos de datos tabulares, ambas aplicaciones nos ofrecen la...

    28,80 €